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Abstract.
Coalition formation is a popular topic studied in connection with multiagent

systems. Recently, a new model of cooperation, called the Coalitional Resource
Games (CRG for brief) has been introduced. In a CRG, agents wish to achieve
certain goals that require expenditure of some resources. Agents form coalitions
to pool their resources in order to be able to achieve a set of goals that satisfy
all members of a coalition. When resources are consumable, many problems
connected with CRGs are hard, e.g. Is a given coalition successful?, Is a given
resource necessary for a coalition to be successful?, etc. In this paper we show
a connection of CRGs with shared resources and ’max-min linear’ systems of
inequalities. This correspondence will enable us to derive polynomial algorithms
for several problems whose counterparts for CRGs with consumable resources are
hard. On the other hand, we prove that other problems are hard also in the case
of shared resources.

Keywords. Multi-agent system, Cooperative game, Resources, Computational
complexity.
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1 Introduction

The study of cooperation of self-interested agents has recently attracted a lot
of attention. The first game-theoretical models of cooperation of several agents
studied mainly the questions connected with the ways of sharing profit obtained
by or costs incurred by a common action of a group of agents [12]. However,
cooperation is quite often more of a qualitative character and profit is not the
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main motivation. From the great amount of topics studied in this area let us
mention here e.g. models studying cooperation of multiagent systems [17, 16, 19],
location of public facilities [5], housing markets [22], formation of marriages and
assigning students to colleges [11], or cooperation of patient-donor pairs in search
for kidneys suitable for transplantation [14, 4].
Any sensible solution concept, capturing such notions like justice, fairness,

or stability, needs to be computable, to enable the agents to actually use it [8].
Efficient computational methods are even more important, if in real situations
the number of cooperating agents is very high. As examples consider the National
Residence Matching Program [13] with as many as 50 000 participating students
every year, kidney exchange programs (the number of patients on the waiting
list for kidney transplantation in the USA is currently more than 70 000 [18])
or residence exchange fairs in Beijing with as many as 80 000 families taking
part [22]. Finally, Internet, as a place for exchanging and sharing information
or for the realisation of distributed computing has millions and millions of users.
So no wonder that the study of computational complexity questions of problems
connected with cooperative games has become very popular.
A new kind of model, called the Qualitative Coalitional Games was introduced

by Wooldridge and Dunne [20]. The authors assumed that agents cooperate with
one another in order they can mutually accomplish their goals. In a special case
named the Coalitional Resource Games (CRG for short) [21], it is assumed that
each goal requires the expenditure of a certain profile of resources and hence
an incentive for an agent to join a coalition is that he may not have enough
resources to achieve his goal. As an example, one may imagine collaborative
science projects where a number of agents cooperate by sharing sophisticated and
expensive equipment, like particle accelerators, super-computers, gene sequencers
etc. Machinery can be used by several agents or for several different research
projects (shared resources), but the character of other resources is such that as
soon as one unit of them has been used for one purpose, it is no longer available
for further projects. Such resources are called consumable and examples of them
are some chemicals or biological material.
Wooldridge and Dunne [21] considered only games with consumable resources.

They formulated several natural decision problems associated with them and
classified their complexity. For example, successful coalition problem asks
whether the pool of resources of the members of a given coalition enables them
to achieve a set of goals that satisfies all of them. This problem was shown to
be NP-complete. Other problem is necessary resource: is it possible that a
coalition will achieve its goals without the use of a given resource? This problem
is co-NP-complete. maximal successful coalition problem asks whether
a given coalition is successful, but after adding any other member it becomes
unsuccessful. This problem is NP-complete as well as co-NP-complete. The
only decision problem shown in [21] to be polynomially solvable for a CRG with
consumable resources was the potential goal set: given a set of goals, does
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there exist a coalition such that this set of goals is both feasible for and satisfies
the coalition?
In this paper we propose to formulate some of the decision problems for Coali-

tional Resource Games in the language of systems of linear inequalities over
max-min algebra. For example, solving the successful coalition problem
for a CRG with consumable resources leads to finding a solution of a system of
inequalities such that some of them are linear in the usual sense and some of
them are ’linear’ when the operation maximum plays the role of addition and the
operation minimum the role of multiplication. On the other hand, a successful
coalition for a CRG with shared resources can be represented as a solution vec-
tor of a purely max-min linear system of inequalities and so its existence can be
decided in polynomial time.
The organization of this paper is as follows. In Section 2 we introduce the

basic concepts of the max-min algebra, review the necessary results known about
solving ’one-sided systems of linear equations’ and derive a new solution method
for special ’two-sided systems’, needed for our study. Section 3 is devoted to
the Coalitional Resource Games, in particular to ones with shared resources. In
Section 4 we show how to formulate several decision problems for the CRG in
the language of max-min ’linear’ systems and based on this correspondence we
derive polynomial algorithms for them. Finally, Section 5 brings hardness proofs
of some other problems.

2 Linear systems in max-min algebra

For the description of games studied in this paper we shall use systems of in-
equalities that are ’linear’ under operations maximum and minimum replacing
the classical addition and multiplication. Therefore we first review the necessary
results known in this area and derive some new ones that will be used later.
Max-min algebra is a triple M = (R,⊕,⊗) where R is a linearly ordered

set with the minimum and maximum elements denoted by 0 and 1, operations
⊕ = maximum and ⊗ = minimum. (By convention, the minimum of an empty
set will be equal to 1.) Max-min algebra, as a special type of a semiring was
introduced to model problems connected with discrete dynamic systems, syn-
chronisation, fuzzy reasoning etc [1, 10].
In this paper, we shall take R to be equal either to the set R+ of nonnegative

reals appended by ∞, or to the two-element Boolean algebra B = {0, 1}. The
symbol R+(n, m) represents the set of all n ×m matrices with nonnegative real
entries. The set of nonnegative real vectors R+(n, 1) will be denoted by R+n . We
use B(n, m) and Bn for binary matrices and vectors and M(n, m) and Mn for
matrices and vectors over a general max-min algebra. In this paper we usually
denote matrices by capitals, vectors by boldface letters and their entries by simple
letters.
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Given a set of vectors S ⊆ Mn, a vector x ∈ S is said to be maximum, if
y ≤ x holds (componentwise) for all y ∈ S and it is maximal if y = x for each
vector y ∈ S fulfilling x ≤ y. Similarly, a vector x ∈ S is minimal if y = x for
each vector y ∈ S fulfilling y ≤ x.
Operations ⊕ and ⊗ are extended to operations with matrices similarly as

in the classical algebra. More precisely, for two compatible matrices A of type
m× n and B of type n× p their (classical) product, denoted by AB, is a matrix
C of type m× p such that

cij =
n∑

k=1

aikbkj.

On the other hand, the max-min product of matrices A and B will be denoted
by A⊗B = C, where

cij =
n⊕

k=1

aik ⊗ bkj,

The basic properties of max-min linear systems of inequalities were formulated
and rediscovered by many authors during the last few decades; among the first
were E. Sanchez [15] and K. Zimmermann in a research report written in Czech
in 1976 [23]:

Theorem 1 Let A ∈ M(m, n), b ∈ Mm be given. The maximum solution of
inequality

A⊗ x ≤ b (1)

is equal to a vector x∗(A,b) whose entries are

x∗
j(A,b) = min{bi; aij > bi}. (2)

Theorem 2 Let A ∈ M(m, n), C ∈ M(k, n), b ∈ Mm, d ∈ Mk. The system
of max-min inequalities of the form

A⊗ x ≤ b (3)

C ⊗ x ≥ d (4)

is solvable if and only if vector x∗(A,b) fulfills inequality (4). Moreover, x∗(A,b)
is the maximum solution of this system.

Proof. The ’if’ implication is trivial. For the converse direction let us suppose
that y is such that A ⊗ y ≤ b and C ⊗ y ≥ d. Then y ≤ x∗(A,b) hence
C ⊗ x∗(A,b) ≥ d. Maximality is implied by Theorem 1.

Notice that since vector x∗(A,b) can be computed in O(mn) time for a given
matrix A ∈M(m, n) and a given right-hand side b ∈Mm, solvability of system
(3)–(4) can be decided in polynomial time.
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A two-sided system of the form

A⊗ x ≤ B ⊗ y (5)

C ⊗ x ≥ D ⊗ y (6)

for A ∈ M(m,n), B ∈ M(m, p), C ∈ M(k, n), D ∈ M(k, p) with unknowns
x ∈ Mn and y ∈ Mp always has a trivial, i.e. zero solution, however, a method
to find nontrivial solutions has so far not been published. For two-sided systems
with equations, i.e. systems of the form A⊗ x = B ⊗ x the algorithm proposed
in [7] could be adapted. That algorithm was designed for a general equation of
the form F (x) = G(x), where F and G are residuated funtions over a partially
ordered set, and thanks to F and G being ’max-min linear’ here, convergence of
this algorithm is ensured, but not polynomiality. Notice that for two-sided linear
systems over a similar structure, called max-algebra when operation ⊗ is the
classical addition, polynomial algorithms have recently been proposed in [6, 2].
On the other hand, we shall need max-min systems of a special form,

A⊗ x ≤ B ⊗ y (7)

C ⊗ x ≥ y, (8)

where in addition, all the matrices as well as unknown vectors x and y are required
to be binary. Let us consider Algorithm 1 given in Figure 1.

Input: Matrices A ∈ B(p, n), B ∈ B(p, m), C ∈ B(m,n).
Output: Vectors x ∈ Bn,y ∈ Bm such that A⊗ x ≤ B ⊗ y and C ⊗ x ≥ y.
begin k := 0; yk = (1, . . . , 1)T ;

repeat xk := x∗(A,B ⊗ yk); Ik := {i; (C ⊗ xk)i < yk
i };

if Ik 6= ∅ then begin yk+1
i :=

{
0 if i ∈ Ik

yk
i otherwise

;

k := k + 1;
end

until Ik = ∅
end

Figure 1: Algorithm 1

Theorem 3 Algorithm 1 correctly decides in O(m(pn+pm+mn)) time whether
system (7) − (8) has a nontrivial binary solution. Moreover, the found solution
is a maximum solution of (7)− (8).
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Proof. As in each repeat-until loop with Ik 6= ∅ at least one entry of yk is
switched from 1 to 0, we have at most m loops. In each loop, the computation of
x∗(A, B ⊗ yk) needs O(pn + pm) steps, and C ⊗ xk can be computed in O(mn)
time. Hence the time bound follows.
To prove the correctness, denote by S the solution set of (7)–(8). Then notice

that for each (x,y) ∈ S, one has (x,y) ≤ (x0,y0). For the induction assumption
take the following assertion:

If Ik−1 6= ∅, then (x,y) ≤ (xk,yk) for each (x,y) ∈ S.

By construction, A⊗xk ≤ B⊗yk. If Ik = ∅, then (xk,yk) already is a solution. If
not, interpreting C⊗xk as a constant right-hand side for (7) and using Theorem
1, we get that any solution (xk,y) ∈ S fulfills y ≤ yk+1. Then, taking B ⊗ yk+1

as a constant right-hand side for (8), again Theorem 1 implies that x ≤ xk+1

for each (x,yk+1) ∈ S . Hence, if Ik 6= ∅ then (x,y) ≤ (xk+1,yk+1) for each
(x,y) ∈ S.

3 Coalitional Resource Games

Definition 1 An instance of a Coalitional Resource Game (CRG for short) is a
six-tuple Γ = (A,G,R, D, E, T ), where

• A = {a1, . . . , am} is the set of agents,
• G = {g1, . . . , gn} is the set of goals,
• R = {r1, . . . , rp} is the set of resources,
• D ∈ B(m,n) is the desires matrix, with

dij =

{
1 if agent i wishes to achieve goal j
0 otherwise,

• E ∈ R+(p, m) is the endowments matrix, with eki representing the quantity
of resource k agent i is endowed with,

• T ∈ R+(p, n) is the technology matrix, with tkj representing the quantity of
resource k needed to achieve goal j.

Definition 2 For a nonempty coalition Y ⊆ A we say that a set of goals X is
satisfying, if for each ai ∈ Y there exists a goal gj ∈ X such that dij = 1. The
family of all satisfying sets of goals for a given coalition Y will be denoted by
D(Y ). A set of goals X is feasible for a given nonempty coalition Y ⊆ A, if
coalition Y has enough resources to achieve each goal from X. The family of all
feasible sets of goals for a given coalition Y will be denoted by F(Y ). A coalition
Y is said to be successful, if D(Y ) ∩ F(Y ) 6= ∅.
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Similarly as in [21], we suppose that each agent i wishes to achieve any goal
from the set Gi = {gj ∈ G; dij = 1}, he is indifferent between them and obtains no
extra utility from achieving more than one goal. However, one can be interested
in inclusion-maximal or inclusion-minimal achievable sets of goals.

Definition 3 Resource rk is called consumable, if any unit of it used for one
goal, cannot be used for another one. A CRG is called a CRG with consumable
resources, if each resource rk ∈ R is consumable. Resource rk is called shared, if
it can be used for all goals simultaneously without restriction. A CRG is called a
CRG with shared resources, if each resource rk ∈ R is shared. A CRG is called
binary, if all the entries of matrices E and T are either 0 or 1.

In what follows, we shall assume that all the considered CRGs with shared
resources are binary, i.e. each goal either requires a particular resource or not and
similarly, a particular agent either owns the resource or not. Further, we shall also
suppose that a feasible goal is available to all members of a particular successful
coalition, i.e. that all goals are ’shared’ in the sense that their availability by
the members of a coalition is not dependent on the number of agents in it. On
the other hand, we do not place similar restrictions on CRGs with consumable
resources.

Example 1 Let us consider a CRG with three agents, two goals and four re-
sources, i.e. m = 3, n = 2 and p = 4. The desires, endowment and technology
matrices are as follows:

D =

 1 11 0
0 1

 , E =


1 1 1
2 0 0
0 1 0
0 0 1

 , T =


3 0
0 2
0 1
1 1

 .

Let us first suppose that all the resources are consumable. For this CRG no
successful coalition exists, as we now show.

• If a coalition does not contain agent a3, it is deemed to be unsuccessful, as
each goal requires resource r4 with which only agent a3 is endowed.

• Any coalition containing agent a3 must achieve goal g2 to satisfy him. How-
ever, this goal requires 2 units of resource r2, which only agent a1 has and 1
unit of resource r3, that is owned only by agent a2. Hence, the only possibil-
ity is the grandcoalition. However, coalition Y = {a1, a2, a3} must achieve
both goals, for which 2 units of resourse r4 are needed. As all agents together
have only 1 unit of this resourse, the grandcoalition is not successful.

In all the following examples we shall suppose that the resources are shared.
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Example 2 Now let again m = 3, n = 2 and p = 4. We take binary matrices

D =

 1 11 0
0 1

 , E =


1 1 1
1 0 0
0 1 0
0 0 1

 , T =


1 0
0 1
0 1
1 1

 .

Similarly as before, any successful coalition must contain agent a3 (because of
resource r4) and then also agents a1 and a2 to ensure the availability of resources
r2 and r3 for goal g2. But now the grandcoalition is successful (the only successful
coalition in this game), as it has all the necessary resources to achieve both goals.
Further, it is easy to see that the only satisfying and feasible goal set for the
grandcoalition is G itself and that this coalition needs all the resources for its
success.

Example 3 The nonconsumable nature of resources as well as goals implies that
the union of two successful coalitions is also successful However, the intersection
of two successful coalitions need not be successful. Take A = {a1, a2, a3}, G =
{g1}, R = {r1, r2},

D =

 11
1

 , E =

(
1 0 0
0 1 1

)
, T =

(
1
1

)
.

Both resources are necessary to to achieve the only goal in this game. Coalitions
{a1, a2} as well as {a1, a3} are successful, but their intersection, the singleton
coalition {a1} is not.

Example 4 Being successful is not a monotone property. This means that there
may exist two successful coalitions Y1 ⊂ Y2 as well as an unsuccessful coalition Y3
with Y1 ⊂ Y3 ⊂ Y2. Take A = {a1, a2, a3}, G = {g1, g2, g3}, R = {r1, r2, r3} and

D =

 1 0 00 1 0
0 0 1

 , E =

 1 0 00 1 0
0 0 1

 , T =

 1 1 10 0 1
0 1 0

 .

Coalitions {a1} and {a1, a2, a3} are both successful – the former one is happy with
goal g1 that requires only resource r1 and agent a1 owns this resource; the latter
one has enough resources to achieve all goals. However, neither from coalitions
{a1, a2}, {a1, a3}, {a2, a3} is successful. The first of them needs goal g2 but does
not possess resource r3, in the second one agent a3 wishes goal g3 but this coalition
does not own resource r2 that is needed, and finally the third coalition do not have
at their disposal resource r1, needed for all goals.
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If one uses just definitions, then checking whether a given coalition is suc-
cessfull may in general require to consider all the possible subsets of G; checking
whether a given successful coalition does not admit a proper subcoalition that
is also successful may mean (see the previous example) the necessity of checking
all its subcoalitions, so the hardness results of [21] are not a very great surprize.
However, the hardness results do not carry over to the case with shared resources.
In the following section we shall obtain polynomial algorithms for several prob-
lems formulated for such CRGs using their relation with max-min linear systems.
Instead of coalition Y ⊆ A we shall often take its characteristic vector y =

(y1, . . . , ym)T ∈ Bm defined by

yi =

{
1 if ai ∈ Y
0 otherwise.

Similarly, a set of goals X ⊆ G is represented by its characteristic vector x =
(x1, . . . , xn)T ∈ Bn with

xj =

{
1 if gj ∈ X
0 otherwise.

4 CRGs and max-min linear systems

Our first considered decision problem is the following:

successful coalition
Instance: CRG Γ and a nonempty coalition Y ⊆ A.
Question: Is Y successful?

We show the connection between successful coalition and systems of
linear inequalities.

Theorem 4 Let Γ be a CRG with consumable resources and Y ⊆ A a nonempty
coalition. Coalition Y is successful if and only if there exists a vector x ∈ Bn

such that

D ⊗ x ≥ y (9)

Tx ≤ Ey. (10)

Proof. Realize that the ith inequality in (9) says

max
j=1,2,...,n

min{dij, xj} ≥ yi,

which can be reworded in the following way: if agent ai belongs to coalition Y ,
then there exists a goal gj ∈ X, which this agent desires. On the other hand, the
kth inequality in (10) says

n∑
j=1

tkjxj ≤
m∑

i=1

ekiyi,
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hence its left-hand side counts the amount of resource rk needed to achieve all
the goals in X and the right-hand side expresses the amount of resource r that
coalition Y owns in common. Hence altogether, inequality (10) ensures that
coalition Y has enough resources to bring about the set of goals X.

Wooldridge and Dunne [21] showed that successful coalition is an NP-
complete problem for binary CRG with consumable resources. (Notice that a
polynomial algorithm for a system of the form (9–10) is not known.) For CRGs
with shared resources we show the connection of successful coalitions and ’pure’
max-min linear systems of inequalities. As such systems are polynomially solv-
able, we shall also be able to derive computational results for some other problems
connected with coalitions. Their formulations will be given later.

Theorem 5 Let Γ be a CRG with shared resources and Y ⊆ A a nonempty
coalition. Coalition Y is successful if and only if there exists a vector x ∈ Bm

such that for the characteristic vectors x and y the following holds:

D ⊗ x ≥ y (11)

T ⊗ x ≤ E ⊗ y (12)

Proof. The meaning of inequality (11) is the same as in Theorem 4. The kth

inequality in (12) now says

max
j=1,2,...,n

min{tkj, xj} ≤ max
i=1,2,...,m

min{eki, yi},

hence the left-hand side is equal to 1 if and only if some goal in set X requires
resource rk and its right-hand side is equal to 1 if and only if at least one member
of coalition Y owns this resource. Summing up, inequality (12) ensures that
coalition Y has all resources needed to achieve the set of goals X.

As for a given coalition Y the right-hand sides in (11)–(12) are constant vectors,
using Theorem 2 we have

Corollary 1 successful coalition problem for CRG with shared resources
can be decided in polynomial time, moreover, the inclusion-maximum set of goals
in F(Y ) ∩ D(Y ) can be found.

Now we turn to the following problem:

successful coalition existence
Instance: CRG Γ with shared resources.
Question: Does there exist a successful coalition Y ⊆ A?

Theorem 5 still applies, but the righ-hand sides of inequalities (11)–(12) are no
longer constants. So we have a two-sided system of max-min linear inequalities
of the form considered in Section 2 and we can use Algorithm 1.
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Theorem 6 An instance of successful coalition existence is a ’yes’ in-
stance if and only if the corresponding system (11)− (12) with unknowns x and y
has a nontrivial solution. Hence, this problem can be decided in polynomial time.

So far we know that if a CRG with shared resources has a successful coalition
then there is one inclusion-maximum successful coalition, but it is an easy exercise
to construct examples with several inclusion-minimal successful coalitions. One
can formulate the following problem:

minimal successful coalition
Instance: CRG Γ with shared resources, successful coalition Y ⊆ A.
Question: Is Y minimal, i.e. is it true that each nonempty proper
subcoalition of Y is unsuccessful?

Theorem 7 minimal successful coalition can be decided in polynomial
time.

Proof. For a given successful coalition Y and its characteristic vector y, system
(11)− (12) with the unknown vector x is solvable. Let us consider for each i such
that ai ∈ Y system (11)− (12) with one extra inequality of the form

yi ≤ 0.

(For brevity, this system will be called an i-system). Clearly, an i-system is a one-
sided max-min linear system, so can be solved in polynomial time. Moreover, it
is solvable if and only if there exists a successful subcoalition of Y not containing
agent ai. Hence Y is a minimal successful coalition if and only if none of the |Y |
i-systems is solvable, which can be decided in polynomial time.

A converse scenario can also be thought of. Suppose that a central body
(say a goverment) is interested in a number of research projects, which could be
followed by various research groups (universities, faculties or research institutes).
However, the research groups are autonomous in the sense that they will choose
independently from the central body which projects to follow and whether to
cooperate with other research groups. The question is whether there could exist
a consorcium of the existing research groups able and willing to accomplish all
the intended research projects.

potential goal set
Instance: CRG Γ, a set of goals X ⊆ G.
Question: Is there a coalition Y ⊆ A such that X ∈ F(Y ) ∩ D(Y )?

Theorem 8 potential goal set problem is polynomially solvable for each
CRG with shared resources.
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Proof. A set X is a potential goal set if and only if the system of max-min linear
inequalities (11)–(12) with vector x being the characteristic vector of the set X
and unknown vector y is solvable. As this is a one-sided max-min linear system,
potential goal set is polynomially solvable.

The following problems deal with resources.

necessary resource for coalition
Instance: CRG Γ, successful coalition Y ⊆ A, resource rk ∈ R.
Question: Is resource rk necessary for Y , i.e. is it true that (T⊗x)r >
0 for each set of goals X ∈ D(Y ) ∩ F(Y )?

necessary resource
Instance: CRG Γ and resource rk ∈ R.
Question: Is resource rk necessary for success, i.e. is it true that
(T ⊗ x)r > 0 for each successful coalition Y ⊆ A and for each set of
goals X ∈ D(Y ) ∩ F(Y )?

Theorem 9 Let Γ be a CRG with shared resources, Y ⊆ A a nonempty coalition
and rk a resource. Coalition Y is successful and resource rk is necessary for Y if
and only if system (11)− (12) is solvable, but the following system is not:

D ⊗ x ≥ y (13)

T ⊗ x ≤ E ⊗ y (14)

(T ⊗ x)k ≤ 0 (15)

Proof. Inequalities (13)–(14) ensure that Y is a successful coalition. Hence
when (13)–(15) is not solvable, then it is exactly because of for no set of goals
X ∈ D(Y ) ∩ F(Y ) the use of resource rk can be avoided.

For both problems formulated for resources, Theorem 9 gives a connection
with max-min linear systems. As system (13)–(15) is either one-sided (for nec-
essary resource for coalition) or of the special form solvable by Algorithm
1, we have

Corollary 2 Problems necessary resource as well as necessary resource
for coalition for CRG with shared resources can be decided in polynomial time.
Moreover, if the given resource is not necessary, the inclusion-maximal set of goals
achievable without this resource can be found in polynomial time.

5 Hard problems

In spite of the polynomiality of the problems considered in the previous section,
a complete description of the structure of all successful coalitions will not be so
easy. Here we prove some hardness results for CRGs with shared resources.
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successful coalition splitting
Instance: CRG Γ with shared resources, successful coalition Y ⊆ A.
Question: Is it possible to split Y into two successful subcoalitions?

Theorem 10 successful coalition splitting problem is NP-complete.

Proof. This problem is in the class NP, due to Corollary 1. To prove com-
pleteness, we shall construct a polynomial transformation from the following NP-
complete problem [9, Problem SP4]:

set splitting
Instance: A collection C of subsets of a finite set S.
Question: Is it possible to split S into two subsets S1, S2 in such a
way that S1 ∩ C 6= ∅ as well as S2 ∩ C 6= ∅ for each C ∈ C?

So let (S, C) be an instance of set splitting. In the corresponding CRG Γ there
will be one agent ai for each element si ∈ S and one resource rj for each Ci ∈ C.
Agent ai owns precisely those resources rj for which si ∈ Cj. There is just one
goal g and it requires all resources.
Clearly, the grandcoalition Y = A is successful in Γ. Moreover, Y can be

split into two successful coalitions if and only if (S, C) is a yes-instance of set
splitting.

Our last two problems deal with cardinality of successful coalition and satis-
fying goal set, respectively.

minimum cardinality successful coalition
Instance: CRG Γ with shared resources, an integer k.
Question: Does Γ admit a successful coalition containing at most k
agents?

Theorem 11 minimum cardinality successful coalition problem is NP-
complete.

Proof. Thanks to Corollary 1, this problem is in the class NP. Now we construct
a polynomial transformation from Problem SP8 of [9]:

hitting set
Instance: A collection C of subsets of a finite set S, an integer k.
Question: Does there exist a subset S ′ ⊆ S such that |S ′| ≤ k and
S ∩ C 6= ∅ for each C ∈ C?

Let (S, C, k) be an instance of hitting set, let us define an instance (Γ, k) of
minimum cardinality successful coalition as follows: there will be one
agent ai for each element si ∈ S, one resource rj for each set Cj ∈ C and one



14 IM Preprint series A, No. 9/2007

goal g, requiring all resources. Moreover, we suppose that each agent ai owns
precisely those resources rj for which si ∈ Cj. It is trivial to see that a coalition
Y is successful if and only if the corresponding subset S ′ = {si ∈ S; ai ∈ Y } is a
hitting set so we are ready. hitting set will be used in the NP-completeness

proof of the following problem too:

minimum cardinality goal set
Instance: CRG Γ with shared resources, successful coalition Y ⊆ A,
integer k.
Question: Is there a goal set X ∈ D(Y ) ∩ F(Y ) with |X| ≤ k?

Theorem 12 minimum cardinality goal set problem is NP-complete.

Proof. It is easy to see that this problem is in the class NP. To prove complete-
ness, take an instance (S, C, k) of hitting set and define an instance (Γ, Y, k)
of minimum cardinality goal set in the following way: there is one agent
ai for each set Ci ∈ C, one goal gj for each element sj ∈ S. Agent ai wishes
to achieve exactly the goals gj such that sj ∈ Ci. Further, there is only one
resource r, each goal requires it and each agent possesses it. Now it is easy to see
that the grandcoalition Y = A = {ai;Ci ∈ C} is successful and the goal sets in
D(Y ) ∩ F(Y ) are precisely the hitting sets of (S, C, k).

6 Conclusion

The aim of this paper was to complement the theory presented in [21] by con-
centrating on Coalitional Resource Games with shared resources. As far as we
know, such games have not been considered in literature yet. We revealed the re-
lation of several decision problems for these game and systems of max-min linear
inequalities, a well established and quite developed theory nowadays. This corre-
spondence enabled us to derive easily many polynomial algorithms for problems
whose counterparts are hard for CRGs with consumable resources. On the other
hand, we also showed that there are computationally difficult problems in this
area too.
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